z^2+(-1+i)z-5i=0

Simple and best practice solution for z^2+(-1+i)z-5i=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for z^2+(-1+i)z-5i=0 equation:


Simplifying
z2 + (-1 + i) * z + -5i = 0

Reorder the terms for easier multiplication:
z2 + z(-1 + i) + -5i = 0
z2 + (-1 * z + i * z) + -5i = 0

Reorder the terms:
z2 + (iz + -1z) + -5i = 0
z2 + (iz + -1z) + -5i = 0

Reorder the terms:
-5i + iz + -1z + z2 = 0

Solving
-5i + iz + -1z + z2 = 0

Solving for variable 'i'.

Move all terms containing i to the left, all other terms to the right.

Add 'z' to each side of the equation.
-5i + iz + -1z + z + z2 = 0 + z

Combine like terms: -1z + z = 0
-5i + iz + 0 + z2 = 0 + z
-5i + iz + z2 = 0 + z
Remove the zero:
-5i + iz + z2 = z

Add '-1z2' to each side of the equation.
-5i + iz + z2 + -1z2 = z + -1z2

Combine like terms: z2 + -1z2 = 0
-5i + iz + 0 = z + -1z2
-5i + iz = z + -1z2

Reorder the terms:
-5i + iz + -1z + z2 = z + -1z + -1z2 + z2

Combine like terms: z + -1z = 0
-5i + iz + -1z + z2 = 0 + -1z2 + z2
-5i + iz + -1z + z2 = -1z2 + z2

Combine like terms: -1z2 + z2 = 0
-5i + iz + -1z + z2 = 0

The solution to this equation could not be determined.

See similar equations:

| 7-4x+10+3x+2x-3=8+3*4 | | (4y-5)-(6y-1)= | | z^2+(-1+i)z+5i=0 | | 12(-2b+10)=-5b-32 | | z^2+(-A+i)z+5i=0 | | 2x-5=5x+7+2x | | (4y-5)-(6y-1)=-2-4 | | 5x^2-12x-65=o | | 81=-9+6p | | 7/8-5/12= | | -7v^2+18v-8=0 | | -3=3x-6 | | 5.4x=-42.12 | | (x+4)+x=11.25 | | 6x-19+3x+32= | | 11x+8y=3 | | -24=3x-6 | | n-13=-30 | | -r^2-9r+52= | | 8.52(-2.5)=35.7 | | -3.4=0.3 | | (2a+7)(2a+4)(39+1)=(1-a)(2a+7)(2a+4) | | c(5c-11)=12 | | 6x-8y=50 | | 6x+9y+3=0 | | 4.2=1.05+U | | 4.2=.75(4.2)+x | | 6x+6=7x-35 | | -f(x)=lx-5l | | 168=111-x | | (X-6)(x+9)=54 | | -4x=6y+2 |

Equations solver categories